
Symmetrised powers of rotation group representations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1981 J. Phys. A: Math. Gen. 14 2509

(http://iopscience.iop.org/0305-4470/14/10/009)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 05:36

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/14/10
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 14 (1981) 2509-2538. Printed in Great Britain 

Symmetrised powers of rotation group representations 

R C Kingt, Luan DehuaiSP and B G WybourneS 
i Mathematics Department, University of Southampton, Southampton, England 
$ Physics Department, University of Canterbury, Christchurch, New Zealand 

Received 24 February 1981 

Abstract. The results given in this paper permit the unambiguous evaluation of all possible 
Kronecker products of the irreducible representations (tensor and spinor) of 0, and SO, 
for n = 2v and n = 2v + 1. A complete resolution of the second and third powers of the basic 
spinor representations of SO*” and S 0 2 v + l  is given, together with a prescription for 
analysing the fourth power of these representations. Detailed application is made to the 
enumeration of properties of SO10 relevant to grand unified theories, and sufficient 
information given to resolve the fourth power of any representation of S o l o .  

1. Introduction 

The n-dimensional rotation groups play an important role in many areas of physics and 
chemistry. They arise, for example, in the description of symmetrised orbitals in 
quantum chemistry (Wybourne 1973), in fermion many-body theory (Fukutome et a1 
1977), in boson models of nuclei (Arima and Iachello 1976), grand unified theories 
(Gell-Mann et a1 1978) and in supergravity theories (Cremmer and Julia 1979). In all 
these applications the analysis of the Kronecker product of irreducible representations 
(irreps) of the n-dimensional rotation group is of significance. 

Interest in the rotation groups has greatly increased in recent times with study of 
candidate groups for grand unified theories of the weak, electromagnetic and strong 
interactions. The group Solo appears to be of particular significance (Fritzch and 
Minkowski 1975, Chanowitz et a1 1979, Buras et a1 1978, Georgi and Nanopoulos 
1979, Witten 1979). In these cases the fermions are usually associated with the spinor 
irreps of some SO, and the bosons with ordinary irreps of the same SO,. All of these 
irreps may be generated from the basic spinor irreps of SO,. Renormalisability 
constraints usually limit interest to Kronecker powers of at most fourth order in any 
particular irrep of SO,. 

A definitive study of the analysis of the spinor irreps of SO, was made by Brauer and 
Weyl (1935). These authors gave a complete description of the resolutions of the 
Kronecker square of the basic spin irrep for both n = 2 v  and n = 2 v  + 1. This analysis 
was extended by Murnaghan (1938), who introduced the use of difference characters in 
resolving the Kronecker square of the irreps of S 0 z y .  Further results were obtained by 
Littlewood (1947, 1948, 1950). Littlewood was able to exploit known isomorphisms 
and automorphisms to resolve all powers of the basic spin irreps of the rotation groups 
in three to eight dimensions. He  noted in his 1947 paper ‘The construction of the 
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concomitants of degree higher than 2 in 10 or more variables would appear to present a 
formidable problem'. 

Butler and Wybourne (1969) showed how it was possible to exploit Littlewood's 
results to reduce Kronecker products for the full orthogonal groups 0, and the rotation 
groups SO,. Furthermore, they gave a prescription for analysing the Kronecker square 
of arbitrary irreps of 0, and SO,. 

A number of their results on Kronecker products have been simplified and 
extended elsewhere (King 1975a, b), and this work is continued here. Explicit formulae 
are given for a complete set of fundamental products from which all possible products of 
irreps of 0, and SO,, may be evaluated both for n = 2v and for n = 2v + 1. 

The explicit resolution of the basic Kronecker squares into their symmetric and 
antisymmetric parts is then given, followed by a complete resolution of the Kronecker 
cubes of the basic spin irreps of SOzytl and SOzy, together with a prescription for 
analysing explicitly the Kronecker fourth powers of these irreps. These results permit 
analysis of the Kronecker second, third and fourth powers of any irrep (spinor or tensor) 
of the groups SOzu+l or SOzu to be made unambiguously. Detailed application of these 
results to the enumeration of properties of S o l o  relevant to grand unified theories is 
made, and sufficient information given to resolve any fourth power of any irrep of SOlo. 

2. Schur-function series 

Throughout this paper we shall make extensive use of the theory of Schur functions (cf 
Littlewood 1950, Macdonald 1979, Wybourne 1970). The following S-function series 
(King 1975b) play a key role: 

L =I( - ljm{lm}, 
E m 

G = 1 (- l)(e-r)'z{~}, H=c( -1 )z{51 ,  
c 

where ('a) and (y) are mutually conjugate partitions, which in the Frobenius notation (cf 
Littlewood 1950) take the form 

(8) is a partition into even parts only and ( p )  is conjugate to (8 ) .  ( 5 )  is any partition and 
( E )  is any self-conjugate partition. (a), (y), (E)  and ( 5 )  are partitions of a,  c, e, and z 
respectively, whilst r is the Frobenius rank of (a), ( y )  and (E) .  

These series occur as mutually inverse pairs: 
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Also 

LA = PC = E, 

MC = A Q  = G, 

MB = QD = F, 

LD = PB = H, 

In addition to the above series we shall make use of both 
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(2.2) 

R ={0}-2 (-1) a+,+,[ 3, s = (0) + 2 [ 3, 
a,b a,b 

where the Frobenius notation has been used once again, and 

x = c {G}, Y = c b l ,  
w w 

where ( U )  is a partition of an even number into at most two parts, the second of which is 
4, and 6 is the conjugate of w. 

We readily find that 

RS = VW = (0) = 1, (2.3) 
and 

P M = A D =  W, L Q = B C = V ,  

MQ = FG = S,  L P = H E = R .  
(2.4) 

We make frequent use of S-function division, signified by /, which is governed by 
the Littlewood-Richardson rule (Littlewood 1950, p 94). In the case of division of 
S-function series we shall often write, for example, 

{h/A} = 1 (-  l)"'*{A/.} 
a 

and 

{ A I @ =  c {Alp}. 
P 

The list of remarkable identities involving S-function multiplication and division 

(2 .5 )  

includes the following: 

{U ' T } / Z  = { U / z }  ' {T/z} f o r Z = L , M , P ,  Q, R ,S ,  V a n d  W, 

{a ' .l/Z = c ( -  1)*{dlZ}  * { T / m  f o r Z = A , C , E a n d G  (2.7) 
b 

where signifies S-function multiplication, which is governed by the same Littlewood- 
Richardson rule: 
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An additional notational development, which we use a great deal, arises most 

(2.9) 

naturally through the application of the Littlewood-Richardson rule to give 

US} ' {PI = c u s + t ;  P/lt}, 
f 

where for any partition A into p non-vanishing parts 

{ l ' ; A } = { A ~ + l , A ~ + l , .  . . , A p + l ,  1'-'} for r 2 p .  (2.10) 

The Young diagram of (1'; A )  is thus formed by adjoining the single column of length r 
corresponding to (1') to the left-hand side of the Young diagram of A. In terms of the 
conjugacy symbol - 

N 
{l', A} = { r ,  A}. (2.11) 

This same symbol is given a meaning in the case r C p by means of the modification rule 
(King 1971) 

{l ';A}=(-l) '  { l P - ' ; A  - h }  with h = p - r - 1 ,  (2.12) 

where p is the number of parts of A, and h is the length of the continuous boundary strip 
or hook removed from the Young diagram of A, starting from the foot of the first, or 
left-most, column and ending in the xth column. The corresponding term vanishes 
unless the resulting Young diagram signified by A - h is regular. 

3. Orthogonal groups 0, 

The orthogonal group 0, has both true representations, commonly referred to as 
ordinary or tensor representations, and projective representations, commonly referred 
to as double-valued or spinor representations. The tensor irreps of 0, are labelled by 
partitions A = (Al ,  A z ,  . . . , A p )  which serve to specify the corresponding characters [A]. 
We denote (King 1975b) the characters of the spinor irreps of 0, by [A; h] ,  where A is a 
partition associated with a set of tensor indices and A is a symbol associated with a 
spinor index. The notation for the character of the basic spin irrep will frequently be 
contracted to just A = [A; 01. This irrep of 0, is of dimension 2" for both n = 2v and 
n = 2 v + l .  

The identity representation of 0, is the one-dimensional irrep whose character [O] 
is unity for every element A of the group. The alternating tensor is not an absolute 
invariant but rather a relative invariant under 0,. Correspondingly, there exists another 
one-dimensional irrep whose character EO]* is det A = *1 for each element A of 0,. For 
each irrep of 0, there thus exists an associated irrep obtained by multiplying each 
matrix representing the group element A by det A.  Thus if [A] and [A; A ]  are characters 
of O,, then 

[A I* = I[OI* and [A; A]* =[A; A][O]* (3.1) 
are also characters. The associated characters [A]* and [A; A]* will differ from [A] and 
[A; A ]  respectively unless the characters [A] and [A; A ]  are zero for all elements of 0, 
for which det A = -1. 

The following equivalence relations or modification rules hold for 0, (King 1971, 
197 5 b) : 

( 3 . 2 ~ )  [A] = ( -  l)x-l [A - h]* with h = 2p -n, 
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[ A ; A ] = ( - l ) "  [A;A-h]*  with h = 2p - n  - 1 ,  (3 .26)  

where the symbols A, p ,  h, x and (A - h )  have exactly the same interpretation as in 
(2.12). Once again the corresponding irrep vanishes unless the resulting Young 
diagram, signified by A - h, is regular. These equivalences allow us to restrict ourselves 
to partitions of at most v parts for both n = 2v and n = 2v + 1, and to establish that the 
inequivalent irreps of 0, are those specified by the following characters: 

0 2 u  [A I, [A I* for p < v, 
[A 1 for p = v, (3 .3a)  

[A; A I  for p s v, 

and 

0 2 U + l  [A I, [A I* for p v, 

for p S v. [A; A], [A; A]* 
(3 .3b)  

All the irreps 0, are self-contragredient, whilst just the irreps of 0 z U  with characters [ A ]  
with p = v or [A; A ]  with p S v are self-associate. 

The connection between the labels (3 .3)  and the usual highest-weight labels is such 
that the irreps with characters [A] and [A;A]  have highest-weight vectors ( A ) =  
( A l ,  A 2 , .  . . , A,) and (A; A )  = ( A l + $ ,  A 2 + $ ,  . . . , A u + $ )  respectively,.where the notation 
for the partition A = ( A l ,  AZ,  . , . , A p )  has been extended in such a way that A, = 0 for 
4 = p + 1 ,  p + 2,  . . . , v. It is sometimes convenient to call the sum of the components of 
the highest-weight vector of an irrep the rank of the irrep or corresponding character, 
so that if A is a partition of 1 the ranks of [ A ]  and [A; A ]  are simply 1 and 1 +$v. 

The spin characters [A; A ]  of 0, may be written as a product of the basic spin 
character A and tensor characters by noting (King 1975b) that for OZ,, 

[A; A ]  = A[A/P] ( 3 . 4 ~ )  

and inversely 

ALA 1 = [A; A /  Ql, 
whilst for 02v+l 

(3.4b)  

[A; A ]  = A[A/P*] ( 3 . 5 ~ )  

and 

ALA I = [A; A/Q*], (3 .5b)  

where it has been convenient to define 

P* = C ( -  l)m{m}'*'m 

Q* = {1"}'*" 

m 

and 

m 

and it is to be understood that, for example, 

(*p - CA/mI if m is even, 
- [A/m]* if m is odd, 

[A/m'*)m] = [A/m] 

( 3 . 6 ~ )  

(3 .6b)  

(3 .7a)  
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since of course 

([()I*)" = [O]"" = Eo] if m is even, 
[[O]* if m is odd. 

(3 .7b)  

4. Rotation groups SO. 

In the case of the groups O;?u+l each irrep remains irreducible on restriction to the 
unimodular subgroup S02v+1. Moreover, the distinction between associate represen- 
tations is lost, so that under this restriction 

0 2 " + 1 5 .  SOZU+l [ A I  5. [AI, [AI*  5. [AI, [A; A I  5. [A; A I ,  [A; A I *  5. [A; A l .  (4.1) 

SOZu+l [A I, [A; A I, p G U. (4 .2)  

The inequivalint irreps of S 0 z v + 1  have characters 

In the case of the groups 0 2 ,  only those irreps which are not self-associate remain 
irreducible on restriction to SO;?,. Each self-associate irrep with character either [ A ]  
with sp = v or [A; A ]  with p G U reduces to a sum of two inequivalent irreps of SOzy under 
this restriction, so that 

0 2 ,  5. so;?, [ A I  5. [AI, CAI* 5. [AI ,  

[ A I &  [Al++[Al-, P = v, (4.3) 

P < v, 

[A; A ]  5. [A; A]++[A; A]-, p U. 

The inequivalent irreps of SOZ, have characters 

SOZY [A I, P < U, 
[A I+, [A I-, P = U, (4 .4)  

[A; A I + ,  [A; A I - ,  p c U. 

Although the irreps with characters [A]+ and [A]- and those with characters [A; A]+ 
and [A; A]- are not equivalent, they are conjugate to one another under an involutary 
outer automorphism, ', of SO;?, involving a matric determinant -1. Under this 
automorphism 

( 4 . 5 ~ )  

(4 .5b )  

( 4 . 5 )  

It follows that the dimensions of the irreps of SO;?, with characters [A]+ and [A]- are 
each equal to half that of the irrep of 0 2 ,  with character [A]  for p = u ,  whilst the 
dimensions of the irreps of SOZ, with characters [A; A]+ and [A; A]- are equal to half 
that of the irrep of 0 2 "  with character [A; A ]  for p G U. 

The highest weights of the irreps with characters [ A ]  for p < U, [A]+ for p = U and 
[A;A], for p a u  are given by (AI, A;? ,..., A,-l ,O),  ( A I ,  A;?, ..., A,-I, * A y )  and 
( A l  +$, A;? + 3, . . . , A,-1 + $, *A, f $) respectively. Correspondingly, if A is a partition of 
I ,  the ranks of the characters [A] for p < U, [A]+, [A]- for p = v and [A; A]+, [A; A]- for 
p s u  are 1, I ,  l -2Au, l + f u  and 1+$v-2(AU+f)respectively. 
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In the case of inequivalent, but conjugate, pairs of SO*, irreps it is convenient to 
denote the characters of their sums by 

[ A I  = [A I+ + [AI-, 
[A; A ]  = [A; A ] + +  [A; A]-, 

( 4 . 6 ~ )  

(4.66) 

and to introduce the difference characters (Murnaghan 1938, p290, Littlewood 1950, 

[A I” = [A I+ - [A I-, ( 4 . 6 ~ )  

[A; A]”=[A; A]+-[A;A]-, (4.6d) 

P246) 

so that 

[AI,  = ;([A I* [AI”), 

[A; A], =$([A; A]*[A; A]”). 

( 4 . 7 ~ )  

(4.76) 

The spinor characters and difference characters may be written as products of basic 
spin characters and difference characters with true characters and difference characters. 
Using the results due to Littlewood (1950) and the various S-functions series identities 
(2.1) and (2.2), it is easy to see that for SOzy 

and inversely 

AEA1 = [A; UQI, 
A”[A] = [A; A/L]”. 

It then follows from (4.7) that 

( 4 . 8 ~ )  

(4.86) 

( 4 . 9 ~ )  

(4.96) 

( 4 . 1 0 ~ )  

(4.106) 

In the case of tensor characters and difference characters it is convenient to write, as 
in (2.10), (El Samra and King 1979) 

[ A l + 1 ,  Az+l , .  . . , A,+l]=[U; A], 

[ A l + l ,  A z +  1, .  . . , A ,  +1]”=[O; A]”, 

[U;A]+=~([O;A]*[O;A]”), 

and 

0 = [U; 01 = [l”] = [1”]+ + [1”]-, 

0” = [U; ol,, = [lyy = [l”], - [1”]-, 

0, =[U; 01, = [1”3* =3(0*0). 

(4 .11~)  

(4.116) 

(4 .11~)  

(4 .12~)  

(4.126) 

(4 .12~)  
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With this notation the analogues of the results (4.8) and (4.9) are 

[U: A]=O[A/Y]+2 1 (-l)f[lv-l-q[A/(l + t+s ) / s ] ,  (4.13a) 

[U;A]"=O"[A/W], (4.13b) 

s, f 

and inversely 

( 4 . 1 4 ~ )  

(4.14b) 

so that 

[U; A]+ = 1 O+(-)q[A/u]+C ( -  1)' [l "-'-q[A/(l+ t +s)/s], 

U,[A]=1 [U; A/&]*(-y +I [I"-'-'; A/l'"'s/ls], 

(4.15a) 

(4.15b) 

w S , f  

w S,f 

where use has been made of the notation of (2.10). 
These results may all be derived from the work of Littlewood (1950) through the use 

of S-function series identities (2.1)-(2.4), and the rules for evaluating Kronecker 
products of tensor irreps of 0, (Littlewood 1958). These rules, taken in conjunction 
with the modification rules (3.2a), lead inexorably to the rather unwelcome double 
summations over s and t .  

To conclude this section, it is worth pointing out that for characters of SOZ" the 
complete set of modification rules is 

[ A ]  = (- l ) " - l [A - h] with h =2p-2v, ( 4 . 1 6 ~ )  

[A; A]=(-  1)"[A; A -h]  w i thh=2p-2u- l ,  (4.16b) 

[A; A I,, = ( -  l)"-'[A; A - h]" with h = 2p -2u - 1, ( 4 . 1 6 ~ )  

[A; A]* = (-  l)"[A; A - h], with h =2p-2u-1,  (4.16d) 

[U; A] = ( -  l)"-' [U; A - h] wi thh=2p-2v-2 ,  (4.16e) 

[ U ; A ] " = ( - I ) " [ ~ ; A  -hiff with h=2p-2v-2 ,  (4.16f) 

[U; A], = (- l)"-l[O; A - h], (4.16g) with h = 2p - 2v - 2. 

The key modification rules appropriate to spinor and difference characters follow 
most readily from the fact that explicit determinantal forms for these characters allow 
[A; A], [A; A]", and [U; A]" to be written as products of A, A", and 0" respectively, with 
formal irreducible characters (El-Samra and King 1979), whose modification rules are 
known (King 1971, 1975b). 

5. Basic Kronecker products 

The Kronecker squares of the basic spin irreps of 0, were evaluated by Brauer and 
Weyl(1935), and may be conveniently written in the form 

2 u  

0 2 v  A' = [Ir] = [l"] +c ([1"-'-"] + [l (5.1~) 
r = O  S 
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(5.lb) 

where use has been made of the equivalence [ I r ]  = [1”-‘]* which follows from ( 3 . 2 ~ ) .  
In the case of the groups SOz,, ( 5 . 1 ~ )  yields 

A2 = [l”] + 2 1 [l 
S 

whilst for the difference characters (Butler and Wybourne 1969) we have 

Afr2 = [I”] -2 ( -  [1 
F 

and 
AA“ = 0” = [ l”]”, 

From these results it is easy to rederive those of Brauer and Weyl(1935), 

A*A* = [ 1 + [ 1 

A,A+ = 1 [ 1 v-1-2s]. 

S 

S 

Furthermore, from (4.9) 

A 0  = [A; l”/Q] = 1 [A; l”-sll, 
S 

A V  = [A; ly/LI,, = 1 (- l )s  [A; 1 y-s] I I .  
S 

Similarly, from (5.2) and (2.4), 

so that (4.9) and (2.1) then yield 

A!J’=[A; l U / Q ] ” = 1 [ A ;  ly-s]II, 

A”O”=[A; 1 ” / L ] = 1  (--l)’[A; ly-’]. 

S 

S 

From these results it follows that 

A,O, = 1 [A; 1 y-2s1,, 
S 

A*U, = [A; 1 u-1-2s]+ 
S 

( 5 . 2 ~ )  

(5.2b) 

(5.2c) 

(5.3a) 

(S.3b) 

( 5 . 4 ~ )  

(5.4b) 

(5.4c) 

(5.4d) 

( 5 . 5 ~ )  

(5.5b) 

Finally, the special case of (4.14) with [A] =U and the use of (5.2), together with the 
rules for evaluating Kronecker products of tensor irreps of 0, (Littlewood 1958), lead 
to 

(5 .6~’)  
S f 

(5.66) 
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( 5 . 6 ~ )  

and thence to (Wybourne and Butler 1969) 

o,o, = c ( [2? lZS]* + c [ 2  v-2-2s-2f, 1 2 s l )  , (5 .7u)  
S f 

o,o, = C (c [2”-1-2s-2f ,  1’”). 
S f  

(5 .76)  

6. General Kronecker products 

With the basic Kronecker products established, it becomes possible to consider 
arbitrary Kronecker products for both 0, and SO,. Littlewood (1958) has shown that 
Kronecker products of tensor irreps of 0, may be evaluated through the use of the 
formula 

[AI[Pl =c [ ( A l l )  * ( P / f ) I  (6 .1)  
5 

and, where necessary, the equivalences given by ( 3 . 2 ~ ) .  

should be noted that for the groups 0,, if n is even, 
Further products may then be evaluated through the use of (3 .4) ,  (3 .5)  and (5 .1) .  It 

A ~ = Q = Q *  ( 6 . 2 ~ )  

and if n is odd 

A’=$Q* (6 .26 )  

since [l‘] = [1”-’]* = { l ‘ } ,  and ( 1 ‘ )  = 0 for r > n. It is then straightforward to show that 
for Ozv 

( 6 . 3 ~ )  [A; AI[pI=C [A; (A/[) * ( ~ / l Q ) l ,  
t 

(6 .3b )  

( 6 . 4 ~ )  

[A; AI[A; PI  = &Q* (U0 * ( d 0 1 .  (6 .46 )  

Whilst ( 6 . 3 ~ )  and ( 6 . 4 ~ )  cannot be improved upon, the same is not true of (6 .36)  
and (6 .46) ,  since these expressions involve sums over the infinite number of terms in the 
series Q and Q*. In the case of ( 6 . 3 ~ )  and ( 6 . 4 ~ )  this is no problem, and the non-zero 
contributions are limited by the number of parts of the partition p. It is the modification 
rules (3 .26)  which ultimately place a limit on the number of non-zero terms in (6 .36 )  
and (6 .46 ) .  It may be shown firstly that the modification rules appropriate to any term p 
appearing in the products (A/[) * ( p / [ )  of (6 .36)  and 6 .4b)  are 

t 

( p )  = ( -  l ) ’ - ’ (p  - h)* with h = 2 q  - n  - 1 = 2 q - 2 v -  1 ( 6 . 5 ~ )  
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and 

( P )  = (- l)”-l(p - h )  with h = 2q -n  - 1 = 2q - 2 v - 2  (6.5b) 

respectively, where q is the number of parts of the partition p. Secondly, making use of 
these rules to restrict consideration to cases for which q s v, for Ozv 

s = o  

and for Oz,+l 

[Q* . = p/Q*](*)”-s. 
s = o  

It then follows that (6.3b) and (6.4b) may be replaced for Ozy by 

[A; AI[A;  PI=^ ([Iu; ((A/[) * ( P / S ) ) ~ / Q I  
c 

(6.66) 

( 6 . 7 ~ )  
and for O Z ~ + I  by 

(6.7b) 

where the subscript q has been included in the factor ((A/[) - ( P / [ ) ) ~  as a reminder that 
each term p in this factor must be modified, using ( 6 . 5 ~ )  and (6.5b), to give a term 
specified by a partition into q parts with q < v. This has to be carried out prior to the 
division by Q or by Q*. No further modification rules are then necessary. 

In the case of S02u+l  it is only necessary to delete * from ( 6 . 4 ~ )  and (6.7b). For 
SOzy, however, Kronecker products involving difference characters are also required. 
From (4.8) and (4.9) 

so that from (4.6) (King 1975a) 

( 6 . 8 ~ )  

(6.8b) 

( 6 . 8 ~ )  

where it may be necessary to use the modification rule (4.16d). Continuing the 
analogues of (6.36) and (6.4b) for SOz, are 

(6.9a) 

(6.9b) 

[A; AI[&  PI=^ [Q 9 (U0 * ( d 0 1 ,  

[A; AI”[A; ~ l ” = c  (-1)”EL * (U51 * (~/4‘)l, 
c 

t 

whilst 



2520 R C King, Luan Dehuai and B G Wybourne 

subject to the modification rule (4.16f). Once again the factors of ( A / l )  ( p / l )  
appearing in ( 6 . 9 ~ )  and (6.96) should be modified in accordance, this time, with the 
rules 

( 6 . 1 0 ~ )  
and 

(6.10b) 

respectively. Having carried this out to enable further consideration to be restricted to 
those cases for which q =s v, the appropriate SOzy identities are 

P = ( - 1)” (P - h ) 

p = (-  l)”-’(p - h)  

with h = 2q - n  - 1 = 2q -2v - 1 

with h = 2q - n  - 1 = 2q -2v - 1 

( 6 . 1 1 ~ )  

v-1-q 

s = o  
(-1)’[L ‘p ]=[ ly ;p /L] -2  1 (-1y [ly-’-S;p/L]. (6.1 1 b) 

These yield 

( 6 . 1 2 ~ )  

where once again the subscript q serves as a reminder that ( 6 . 1 0 ~ )  and (6.10b) should 
be used, if necessary, before dividing by Q and L respectively. 

From (4.76) 

( 6 . 1 3 ~ )  

[ A ; h l ~ [ A ; r l ~ = ~ [ ~ A ; A l ~ A ; ~ l - ~ ~ ; h l ” ~ ~ ; ~ l ” * [ A ; h l ” ~ ~ ; ~ 1 ~ [ A ; h l [ A ; ~ ~ ] ,  

(6.13b) 
so that using ( 6 . 9 ~ )  and (6.12), these products may be evaluated. 

The only thing which prevents a general formula being written for these products is 
the distinction between the modification rules to be used in (6.9c), ( 6 . 1 2 ~ )  and (6.12b), 
i.e. the distinction between applying (4.10e) after division by Q and L in (6.9c), and 
applying ( 6 . 1 0 ~ )  and (6.10b) before division by Q and L in ( 6 . 1 1 ~ )  and (6.12b). It is a 
remarkable fact, however, that these modification rules lead to identical sets of terms 
[U; a] and [U; a]” in (6.9c), ( 6 . 1 2 ~ )  and (6.12b), differing only in sign factors f 1 
multiplying each of them. 

This is the end of the success story, in that obtaining similar concise general formulae 
for the remaining products of SOzy appears to be a formidable problem. 

For example, from (successively) (4.13b), (6.1), (4.14b), (2.5) w i t h 2  = V and (2.3), 
we find 

(6.14) 
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Unfortunately the double summations in ( 4 . 1 3 ~ )  and ( 4 . 1 4 ~ )  inhibit the derivation of 
any similar formulae for [U; A ]  [ p ] .  

Nevertheless [U; A ]  [ p ]  can of course be evaluated directly from (6.1) with A 
replaced by U; A. The result in combination with (6.14) then yields [U; A], [ p ]  as 
required. 

Similarly [U; A ]  [U; p ]  may be evaluated from (6.1) and [U; A],, [U; p ]  from (6.14), 
but (4.13b), together with (6.1), gives, after using (2.5) with 2 = W, 

(6.15) 

where the complication is the inclusion of the v-dependent factor prefixing the 
v-independent summation over 4‘. This factor is given by (5.6b) and then, via (6.1) 
again, it is possible to evaluate the product (6.15) explicitly, and thus to obtain by means 
of the formulae (6.13) with A replaced by 0 the products [U;A] ,[O;p]+ and 
[U; A I + D ;  P I T .  

Finally, we can evaluate [A; A ] [ 0 ;  p ]  and [A; A]”[O; p ] ,  using (6.8) with p replaced 
by U; p, whilst following what is now a familiar procedure leads to the formulae 

( 6 . 1 6 ~ )  [A; A 1 [ 0 ;  c1], ,= Aha" c [((U0 ’ ( P / l W ) / P I ,  
t 

(6.166) 

where the prefixes to the summations over l are given by (5.4). Manipulations with 
(4.8), (4.9), (6.1), (2.1) and (2.5) with 2 = Q and 2 = L then yield 

[A; A I [ Q  ~ l ” = c  [A; (1”-‘/Q) * (((A/&) * (p / l ) ) / l ’P ) l ,  ( 6 . 1 7 ~ )  

[A; AI”[O; PI” = [A; (l”-’/L) ( ( ( A / f Q )  * (dl))/1’WI”. (6.17b) 

From (6.16) and (6.17) it is then possible to evaluate [A; A],[O; p] ,  and [A; A],[O; p IF .  
This completes the task of devising expressions which lead to an essentially mechanical 
evaluation of any Kronecker product of irreps of 0, or SO, for both n = 2v and 
n = 2 v + l .  

S,C 

’9 5 

7. Resolution of Kronecker powers 

Having developed methods of reducing all Kronecker products of 0, and SO, into 
irreducible parts, we are faced with the problem of resolving Kronecker powers. That 
is, given the mth power of some representation with character A ,  it is possible to resolve 
it into its various symmetrised mth powers with characters, denoted by A O { p }  in 
accordance with the reduction 

where p is a partition of m and f ”  is the dimension or degree of the irrep of the 
symmetric group S ,  labelled by p. The symbol 0 denotes the operation of plethysm 
(Littlewood 1950, Wybourne 1970) which was introduced in an extension of the 
algebra of S-functions, but which is intimately associated with group-subgroup reduc- 
tions (Wybourne and Butler 1969, Butler and King 1973). It gives the branching rule 
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appropriate to the restriction from U N  to a subgroup G, where G possesses a unitary 
representation with character A of dimension D ( A ) = N ,  in accordance with the 
prescription 

U N ~ G  {PI .1 A 0 {CL) ,  ( 7 . 2 ~ )  

where the S-function { p )  is the character of an irrep of UN of dimension D N ( k ) .  It 
follows that necessarily 

m h  0 {kH =DiVbL). (7.2b) 

Littlewood (1950, p 290) has developed the algebra of plethysms which is governed 
by the rules 

A 0 ( B  f C )  = A 0 B f A 0 C, 

A 0 (BC) = ( A  0 B ) ( A  0 C) ,  

( 7 . 3 ~ )  

(7.3b) 

A 0 ( B  0 C )  = (A  0 B )  0 C, (7.3c) 

(7.3d) 

(7.3e) 

(7.3f)  

Here 0 signifies an inner product of S-functions so that p 0 p is the Kronecker product of 
irreps of S ,  labelled p and p which are both partitions of m. 

Not all plethysms A 0 { p }  for different p are independent of one another. For 
example, from ( 7 . 3 ~ )  and (7.36) 

A 0{ l2 )=A2-A  0{2),  

whilst 

A 0 ( 3 ) ~  (A  0 ( 2 ) ) A  - A  0 {21), 

A 0 { 1 3 ) =  ( A  0 {12))A - A  0 { 2 1 ) .  

More significantly, from ( 7 . 3 ~ )  

A 0 ((2) 0 (2 ) )  = (A  0 (2)) 0 12) = A 0 ((4) + {22)), 

A 0 ((2) 0 (12)) = (A  0 (2)) 0 {12) = A 0 (3 l ) ,  

A 0 ( { 1 2 ) 0 { 2 } ) = ( A  0 { 1 2 ) ) 0 { 2 ) = A  0 ( {22)+{14) ) ,  
A 0  ( { 1 2 ) 0 { 1 2 ) ) = ( A  0{12))0(12)=A 0 { 2 1 2 ) ,  

where use has been made of some very simple plethysms, and from (7.3b) 

A 0 ((3) * (11) = (A  0 (3 ) )A  = A 0 ((4) + (3 111, 
A ~ ( ( 1 3 ) * { 1 ) ) = ( A ~ ( 1 3 ) ) A = A ~ ( { 2 1 2 ) + { 1 4 ) ) ,  

A 0 ((2) * (2)) = (A  0 {2))2 = A 0 ((4) + (31) + {22)), 
leading to the basic identities 

A 0 (4)  = (A  0 (3 ) )A  - (A  0 (2)) 0 { I 2 ) ,  

(7.4) 

( 7 . 5 ~ )  

(7.5b) 

( 7 . 6 ~ )  

(7.66) 

( 7 . 6 ~ )  

(7.6d) 

(7.7a) 

(7.7b) 

(7.7c) 

( 7 . 8 ~ )  
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A 0 (31) = (A 0 (2)) 0 {l'), 

A 0 (2') = (A 0 (2))' -(A 0 {3))A, 

A 0 (21') = (A 0 (1')) @ {I2}, 

(7.8b) 

(7.8c) 

(7.8d) 

A o {i4) = (A o { i 3 } ) ~  -(A o {i2)) o {i2}. (7.8e) 

These allow all Kronecker powers of degree four to be resolved from a knowledge of 
lower-degree powers and products. Indeed, to resolve all Kronecker powers of A of 
degrees two, three and four it is only necessary to evaluate A 0 (2) and A 0 {21}, for 
example. 

The key to the resolution of the Kronecker powers of irreps of 0, is the recognition 
that the relationships between characters of 0, and U, (Littlewood 1950, p 240) is 

(7.9a) 

(7.9b) 

so that the Kronecker mth powers of tensor irreps of 0, are determined by the 
formulae 

( 7 . 1 0 ~ )  [ A I  o {tL) = [({UCI 0 {CLHID] 
and 

[AI* 0 {CL} = [({AICI 0 {FL))lD1(*)m (7.10b) 

where p is a partition of m. This last result follows from the facts that [A]* = [O]*[A], 
[O]*=[l"]={l") and {l"}O{p)=O for ( p ) # ( m )  and {l"}O{m}={l"m}={l"}m = 
[O]'*", together with (7.3f). 

In the case of S02,+l  ( 7 . 1 0 ~ )  suffices. For S 0 z y ,  if A, = 0 then ( 7 . 1 0 ~ )  again suffices, 
provided ( 4 . 6 ~ )  is applied where appropriate to characters appearing on the right-hand 
side of ( 7 . 1 0 ~ ) .  Of course, in many cases the modification rules ( 3 . 2 ~ )  may also be 
required. 

Kronecker powers of spin irreps of 0, may be resolved by recalling (7.3f) and 
making use of ( 3 . 4 ~ )  and (3.5a), which lead for OZu to 

and for 0 z v + 1  to 

(7.1 16) 

where E *  = P*C so that the only difference between ( 7 . 1 1 ~ )  and (7.11b) is that the 
latter indicates a factor [O]'*" for each partition E of e appearing in the series E. 

Again, for SOzy+l (7.11b) suffices with the * removed to give (7.11a), but for SO'" it 
is necessary to resort to difference characters. In addition to (7.10a), including the case 
for which [A]  is replaced by [O; A], and ( 7 . 1 1 ~ )  we need the results 

[A; A],, 0 { p )  = [Aff 0 {p)l[({A/G) 0 {P o P))/D], 

[U; AI,, 0 {CL) = c [U" o {PIl[({A/A1@ {CL O PI)lDl, 

( 7 . 1 2 ~ )  

(7.126) 
P 

P 
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where use has been made of (4.8b), (4.13b), (7.3f) and the S-function series identities 
of Q 2. 

It is worth pointing out that the automorphism ’ of SO2, is such that by virtue of 
(4.9, and the definitions (4.6) and (4.11), 

[A; A Y t  = -[A; A]” and [a; A]”+ = -[U; A]”. (7.13) 

Hence from (7.3e) 

[A; AI,, o {,L} = (-[A; A]”’) o {,L} = ((-[A; A]”) o {;}I+ = ( -  I)”([A; AI,, o ip})+ 
( 7 . 1 4 ~ )  

[ ~ ; A ] f f O { ~ } = ( - l ) m ( [ O ;  A]’f@{p})t (7.14b) 

and similarly 

whilst, more obviously, 

[A; A I *  0 {/AL.) = ([A; AI:) 0 {pl = ([A; A I F  0 {pCLIt 

[U; A I +  0 { p }  = ([U; AIr’) 0 { p }  = ([U; A I T  0 {p))+.  

( 7 . 1 4 ~ )  

(7.14d) 

These identities reduce the number of separate evaluations which need to be made or 
tabulated. 

From a knowledge of the plethysms involving [A; A], [A; A]”, [U; A ]  and [U; AI,, the 
plethysms [A; A], 0 { p }  and [U; A], 0 { p }  may be evaluated by noting (4.76) and 
(4 .11~))  and using (7 .34  and ( 7 . 3 ~ )  to give, denoting[A; A]* and [U; A], simply by [A],, 
for Gonvenience: 

and 

( 7 . 1 5 ~ )  

c ( - 1)‘([A I 0 { p / l ) ) ( [ A  1’’ 0 (7.15b) 

where the first forms of ( 7 . 1 5 ~ )  and (7.15b) include 2([A]+ 0 {p}) and 2([A]- 0 { p } )  
respectively, along with plethysms appearing in lower Kronecker powers than the mth, 
where p is a partition of m. Thus, for example, we find for m = 3 

[A]+ @{21}=$(([A]+[A]”) {21})-[A]: 

i 

=$([A] @ {21}+ [A]” @ {21}) -k( [Al3  - [A]2[A],,+[A][A]”2- (7.16) 

It follows that we have a systematic procedure for resolving all Kronecker powers of 
irreps of 0, and SO,, provided that the Kronecker powers of the basic irreps with 
characters A, Af’ and 0” may be resolved, In the case of 0” there is no problem, in 
principle, in that from ( 5 . 2 ~ )  and (7.3f) 

(7.17) 0” 0 { p }  = (AA‘) 0 { p }  = C (A 0 {p})(A” 0 {p 0 PI). 
P 

Incidentally, from (7.10u), 

0 0 {@I = [ I” ]  o {PI = [({1”10 bI)/Dl. (7.18) 

The final task is then that of evaluating the basic spin plethysms A 0 { p }  and h“ 0 {p } .  
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8. Resolution of the basic Kronecker squares 

Littlewood (1947) has given the complete resolution of the Kronecker square of the 
basic spin irrep of 0, into its symmetric (A 0 (2)) and antisymmetric (A 0 (1’)) parts. 
For Ozv he found 

A 0 ( 2 )  = [ 1 7 + ~  ~ ~ i ~ - 1 - ~ ~ ~ + ~ i ~ - 3 - 4 ~ ~ * + ~ i ~ - 4 - 4 ~ ~ + ~ 1 ~ - 4 - 4 ~ ~ * ~ ,  ( 8 . 1 ~ )  

A 8 (12)  = 1 ([I ~-1-4x]* + [1 U-2-47 + [ 1 ~ - 2 - 4 ~ ] *  + 11 ~-3-4x]), ( 8 . l b )  

whilst for 02u+1 the cases for v even and v odd must be distinguished, giving for Y even 

X 

X 

and for v odd 

( 8 . 2 ~ )  

(8.2b) 

( 8 . 3 ~ )  

(8.36) 

In the case of S02,,+1 it is only necessary to set [A]* = [A]  in (8.2) and (8.3), which then 
yield identical formulae for Y even and odd. 

For S 0 z y  the same procedure yields 

~ 8 ( 2 ) =  [iU3+C ([1v-1-4x]+[1v-3-4X]+2[1”-4-4x]), ( 8 . 4 ~ )  
X 

A @ { l ’ ) = C  ([l’-1-4x]+2[lv-2-4x]+[1”-3-4x]). 
X 

(8.4b) 

In order to cope with the difference characters, it is helpful to note first that 

A o (1’) = (A++A-)  o (1’) = A, o ( ~ ’ ) + A + A - + A -  o (P), 

~ + o ( i ~ ) + ~ - o { i ~ } = 2 ~  [1’-2-4x]. 

so that from (7.4b) and (5.3b) 

X 

Each term of the right-hand side is invariant under the automorphism ’, This implies 
that the same is true for both terms on the left-hand side. Hence 

A+ 0 (1’) = (A+ 0 (1’))’= A- 0 (1’). 

Therefore 

A ” @  ( 2 )  = (A+ -A-) 0 (2) A+ 0 ( 2 ) -  A+A- + A -  0 (1’) 
= A+-A+A-=$(A”’+O’’) 2 

and likewise 
A” (1’) = S(Arr2 -0“) 
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with the terms in A“’ following from (5.2b). Hence (Wybourne and Butler 1969) 
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A” 0 (2) = [ 1 ”I+ - 

A” 0 (1’) = [1”]- -1 ( -  1)”[1 u-l-x], 

( - 1)“ [l 
X 

X 

and combining this result with (8.4) yields 

( 8 . 5 ~ )  

(8.5b) 

A*@{2}=[1”],+C X [i”-4-4x], ( 8 . 6 ~ )  

(8.6b) 

in conformity with the results of Littlewood (1947). 

knowledge of the plethysm (Littlewood 1943) 
In the case of the characters 0 and U, the resolution of 0’ follows from a 

0 0 { 2 } = { 1 ” } o { 2 } = ~  {2’-s, lZS}=C lZS] 
S s, r 

and the use of the modification rule (3.2a), whilst the resolution of U”’ proceeds by 
noting ( 5 . 2 ~ )  and writing 

o,lO{2}= (AA’)O{2}= (AO{2})(A”O{2})+(AO{12})(A”@{12}). 
(8.7) 

It then may be seen that 

U o (1’) = c ( [2v-2s, 1’”]-(-,. -e (- 1)f[2y-1-zs-f, P I ] .  
S f 

Hence 

(8.10a) 

(8.106) 

9. Resolution of the basic spin Kronecker cubes 

(8.8a) 

(8.86) 

(8.9a) 

(8.9b) 

The evaluation of the plethysms A 0 { p )  for the groups 02v+l or 0 z v  is equivalent, by 
virtue of (7.2), to determining the reduction of the irrep of having character { p }  into 
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irreps Qf 02v+1 or 02” respectively. The dimensions of the irreps are readily found. In 
particular, 

D2”{3) = 2”(2” + 1)(2” + 2)/6, ( 9 . 1 ~ )  

D2~(21}=2”(2” + 1)(2”-1)/3, (9.lb) 

whilst 

Dzu+*[lX1 = ( 2u + l), 
X 

D Z ~ [ ~ ‘ I = ( ~ ” ) ,  X 

and, of course, 

( 9 . 1 ~ )  

(9.2a) 

(9.2b) 

(9.3u) 

(9.3b) 

In evaluating the resolved Kronecker cube of A, we endeavour to express the results 
as a product of the basic spin character A and a series of characters of 0, of the generic 
type [l”]. It is a non-trivial task to distinguish between mutually associate pairs of 
irreps, so that from now on we limit attention to the groups SO,. In the case of 
n = 2 u + l  and n =2u, with U = 1,2, .  . . , the results for A @  (21) may be readily 
evaluated, exploiting known isomorphisms (automorphisms in the case n = 8) and 
explicit evaluation using Kronecker products and dimension checks (computer 
generated tables in the case n = 10 by courtesy of Dr P H Butler) together with the 
branching rules 

UY .1 SOZ”+l 5. SO?” 

Dl .1 [11 + [OI 

[OI .1 LO1 
[l”] .1[1”]+[1”-’] 

(1) .1 A & A = A++ A- 

(21) 4 A 0 (21) 5. A 0 (21). 

These results for S02v+1 with U = 1,2 , .  , . , 5 are all of the form 

A@{21}=A([1”-1]+[1”-4]+ . . . )  

which suggests that in general 

(9.4) 

(9.5) 

This may be checked dimensionally, and is in agreement with the combinatorial identity 

(2” + 1)(2” - 1)/3 = 1 ( 
x v-1-3x (9.6) 
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Analogous identities can be established for the terms in A 0 (3) and A 0 {13). Alter- 
natively, and more simply, the use of (7.5) gives the complete results for SOz,,+l: 

R C King, Luan Dehuai and B G Wybourne 

A 0 (3) = A 1 ([I - [I 1 + [1 v - 3 - 1 2 x  1 + [1 v-8-1zx 1 - [1 v-10-12x 1 + [1 v - l l - l z x  I), 
X 

(9.7a) 

(9.7b) 

The corresponding results for SOz, follow from the branching rules (9.4), which give 

A 0 {3)= A [1”]+C ( -  [l 1 + [1 v - 3 - 1 2 x  1 + r 1 v-4-12x 1 I .  
( 9 . 8 ~ )  

A 0 (21) = A E ([I V - ~ - ~ X ]  +[I ~ - ~ - ~ x ] ) ,  (9.86) 
X 

A o {13) = A 1 ([I u-2-1zx 1 + [1 ”-3-12x 1 - [1 v-4-1zx 1 
X 

+ 211 v-6-1zx 1 - [1 v - 8 - 1 2 x  1 + [1 v-9-12x 1 + [1 w-lo-lzx I). (9 .8~)  

It only remains to prove the one result upon which (9.7) and (9.8) depend, namely 
(9.5). This may be done by induction with respect to v and the use of the branchings 
(King 1975b) 

(9.9) 

( 9 . 1 0 ~ )  

(9.10b) 

(9.10~) 

(9.10d) 

where a prime is used to distinguish characters of S02,,-1 from those of S 0 2 v + l .  It 
follows from (9.10d) and (7.3d) that 

A 0 (2 1) 4 (A’ + A’) 0 (2 1) = 2(A’ 0 (2 1) + 
Writing 

(9.11) 

A 0 (21) = AXv and A’@{2l}=A1XL-1, (9.12) 

this yields, after recourse to (9 .10~)  and the cancellation of a common factor of 2A’, 

X J M M  = XL-1 i- A I 2  ( 9 . 1 3 ~ )  

and hence the recurrence relation 

X,, = r(XL-1 + A’2)/LL] (9.13b) 

where of course [. . .]’/LL = [. . ./LL]. Assuming as the basis of an induction argument 
that 

x ; - ~  = 1 [1 v - 2 - 3 ~ 1 ’  
X 
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and taking 
A!2 = 1 [1 U - l - 3 X ] r  

X 

from (5.lb), it is straightforward to show from (9.13b) that 

as required. The induction argument is then completed by means of the known validity 
of (9.5) in the cases v = 1 and 2, thus proving the general validity of (9.5). 

Having proved in this way the validity of not only (9.5) but also (9.7) and (9.8), it is 
then necessary to consider the Kronecker cubes of A’. Once again explicit results were 
obtained for S02, with U = 2, 3, 4 and 5 ,  giving 

so4 - A.”([ 11 - [OI), 
SO6 - A”(C1’1- CID, 

SO8 - A”([ 1’1 - [ 12] - [O]), 
(9.14) 

so10 - A”([ 14] - [ 13] - [ 13 + [O]), 

where, remarkably, the bracketed terms are of total dimension 3”-’ in each case. The 
general series is then identified as 

A”@(21}= A ” X  ( - [ ~ v ~ 1 ~ 6 x ] + [ ~ u ~ 2 ~ 6 x ] + [ ~ u ~ 4 ~ 6 x ] - [ ~ ” ~ s ~ 6 x ] )  (9.15) 
X 

by virtue of the combinatorial identity 

The identities (7.11) then yield, from (8 .5 ) ,  

Finally from ( 7 . 9 ~ )  with A replaced by A, and (7.5) yet again, we lind 

A* 0 (3) = A*[ 1 ”I* + 1 ( - A,[ 1 v - 2 - 1 2 x ]  + A,[ 1 v - 3 - 1 2 x  1 
X 

+ A S 1  ”-9-12x u - 1 0 - 1 2 x  ]+A,[l ”-12-12x,), 

(9.16) 

(9.17a) 

(9.1 q 

(9.18a) 

(9.18b) 

(9.18~) 
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where it is to be noted that [l ] is always associated with a factor A*(-)P. This 
provides the clue to proving the validity of these results which all depend on the 
conjecture (9.15). They may equivalently be seen to depend upon (9.18b), which may 
be proved by consideration of a group-subgroup chain once again. 

The relevant chain and branching rules are those of (9.4) which imply, using (9.12), 
that 

(9.19) (A+ + A-) 0 (21) = (A+ + A-)[X,/M] 

with X ,  determined by (9.5). It follows from (7.3d) that 

( A + + A - ) ~ { 2 1 ) = A + ~ { 2 1 ) + A ~ A - + A - A ~ + A - ~ ( 2 1 }  

= A+ 0 (21) + A -  0 (21) + (A+ + A-)A+A-. (9.20) 

We now write 

A+ 0 {21)= A+Y,  + A - Z ,  (9.21) 

where Y, and 2, are tensor characters whose irreducible constituents are necessarily 
labelled by partitions of y and z respectively, with y E v (mod 2) and z = (v - 1) (mod 2) 
by virtue of the Kronecker product rules for SO2, such as (4.10), (5.3) and (6.1), as well 
as the modification rules (4.16) which all preserve the ranks of partitions of irreps of 
SOzy mod 2. This implies a similar preservation of rank mod 2 in the case under 
consideration of Kronecker cubes. Furthermore, the automorphism ’ is such that 

A- 0 (21) = (A+ 0 (21))’ = (A+ Y, + A-Z,)’ = A- Y, + A+Z,  (9.22) 

so that in (9.20) 

(A+ + A-) 0 (21) = (A+ + A-)( Y +Z + A+A-), (9.23) 

giving in conjunction with (9.19) and (5.3b) 

Y, + Z, = [ X , / M ]  - A+A- 

(9.24) 

so that 

and 

(9.256) 

as required in (9.18b). 
From the results on the resolution of the squares and cubes of A and Aff it is then 

straightforward to resolve the same powers of 0” by means of (7.17). Fourth powers 
may be dealt with through the use of (7.8) which, for A and A”, involve the further 
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evaluation of [ l " ]  0 { 2 )  and [ l " ]  0 (1'). This is accomplished by noting that 

( 1 % )  o 12) = 1 { ~ X - ~ S ,  1 4 7 ,  ( 9 . 2 6 ~ )  

( 1 " )  o { P )  = { ~ X - ~ - ~ S ,  P + ~ s ) ,  (9 .26b)  

S 

S 

so that from ( 7 . 9 ~ )  

[1"3 o ( 2 )  = 1 [ 2 " - ' 7  i47,  
s.r 

( 9 . 2 7 ~ )  

[ I " ]  @ ( 1 2 )  = c [2*-1-2s-t, 12+4s ] .  (9.27 b )  

These allow the full resolution of the Kronecker powers A4 and Aff4,  and lead via (7 .17)  
to the resolution of While it is possible to produce closed formulae of the type 
found for Kronecker squares and cubes, they tend to be unwieldy and will not be given 
here. 

S, t 

10. Application to SOlo 

In view of the current interest in SOlo-based grand unified theories, it is worthwhile 
illustrating some of the preceding results by explicit application to SOlo. A short list of 
dimensions of relevant Solo irreps is given in table 1 .  Note that in going to Ol0 the 
dimensions of irreps [ A ]  with A s  # 0 are double those listed for [A]* in the SOlo list, and 
similarly for all irreps [A; A ] .  

Table 1. Dimensions of true and spin irreps of Solo .  

[A I D [ A  I DIA:Al* 

[OI 1 16 
[I1 10 144 
[121 45 560 

120 1200 
1440 

WL 126 672 
P I  54 720 
1211 320 3 696 

ci31 
[i41 210 

[2121 945 8 800 
w31 1728 11 088 
[2i41* 1050 5 280 
[Z21 770 8 064 
[2211 2 970 25 200 
[2212] 5 940 34 992 
~ 2 ~ 1 ~ 1 ,  3 696 17 280 
1 2 ~ 1  4 12s 30 800 
~ 2 ~ 1 1  10 560 5 5  440 
~ ~ 1 ~ 1 ~  6 930 29 568 

8 910 39 600 
26 400 ~2~ lit 6 930 

~ 2 ~ 1 +  2 772 9 SO4 

~~1 
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The basic spin irrep A of 0lo is of degree 25 and may be embedded in the defining, 
vector irrep (1) of U32. The evaluation of the plethysms A O { p }  is equivalent to 
determining the U32 & 010 branching rules. These reductions are given in table 2 for all 
partitions p of rank four or less. The results may be checked by comparison of the 
dimensions 032{p} of U32 with the sum of the dimensions of the Olo irreps contained in 
the reduction. 

The plethysms given in table 2 follow from (8.1) for power two, (9.8) for power three 
and thence the power four plethysms are evaluated using (7.8) and (10.2). 

The independent plethysms Aff 0 { p }  for partitions of rank four or less are listed in 
table 3. The list may be completed using (7.14). In the case of even-rank partitions p, 
we check that the dimension of the plethysm is zero in accordance with (9.3b), whilst for 

Table 2. U32 J, Olo reductions corresponding to the plethysms A 0 { w } .  

32 

528 

496 

5 984 

10 912 

4 960 

52 360 

139 128 

87 296 

122 760 

35 960 

[A; 01 

[0]+2[1]+[l2]+[l4]+[l5] 

[O] +[12] + 2[13]+[14] 

2[A; 0]+2[A; l]+[A; 12]+[A; 14]+[A; 1'1 

4[A; 0]+3[A; 1]+2[A; 12]+2[A; 13]+[A; 14] 

[A;O]+[A; 1]+2[A; 12]+[A; 13] 

2[0] + 2[1] + 2[12] + 2[13] + 3[14] +2[151 + 3121 +2[211+ 2[2131+ 2~2141 
+[22]+[2212]+ [2'13]+[2"] +[241] +[251 

+ 3[214] +[27 + 2[2211 + 3[2212] +2[22131+ 2[2311+ 2[23121 + [241+[2411 

+ 3[214] + 2[27 + 2[221] + 2[2212]+[2213] + 3[23]+2[231] +[24] 

+2[2141 +[221 +4[2211+s[2212]+ 2[22131+[231 + 2[2311 +[23121 

2[0] +6[1]+8[12] + 8[l3]+9[l4]+ 5[15]+ [2] +4[21]+6[212]+6[213] 

S[0]+4[1]+3[l2] +6[13] + 7[14]+3[15] +4[2]+ 2[21]+ [212] +4[213] 

[0]+4[1]+ 7[12] + 8[13]+ 8[14]+4[15] +[2] +4[21]+7[212]+6[213] 

[O]+ [12] +2[13]+ 2[14] +[l5]+[2]+2[211 +[2l2l+2[2l31+ 2[2141+3[22] 
+ 2[221] + [2212] + [2213] + [23] 

Table 3. Plethysms A"@ {+} for Solo. 

A"@ {4} = (2[12]+2[14]+[2]+2[212]+3[214]++[22]+[2212]+[2312]+ +[25]+)-([1]+2[131+3[151+ 
+2[21]+ 2[213] + [2?1 +2[22131+ + [2411+) 

A" 0 {31} = (3[0] +7[12]+9[14] +2[2]+ 5[212]+4[214]+ + 2[2l4I- +4[2212]+ 2[2'] +D3I+ 2[2312]+ + [24]) 
- (5[1]+ 8[13]-6[15]+ + 3[15]- +4[21]+6[213]+ 3[221] + 3[2'13], 
+ [2213]- + 2[231]+[241],) 

+[2213]- + 2[231]) 

A" 0 {2*} = (2[0] +4[12] +6[14] + 2[2] +4[212] + 2[214]+ + 2[214]- + 2[2212]+2[23] + [23121+ + [23121-) 
- (4[1]+ 6[13]+3[15]+ + 3[15]- +2[21]+4[213]+ 2[221]+[2213]+ 
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rank three partitions we note, as a check, that from (7.1) 

All3 = A ’ @  ({3}+2{21}+{13}) = A”A”2 (10.1) 

with A I 2  given by (5.2b). 
With the above results established, it becomes possible to evaluate plethysms of the 

form A, 0 {p} .  This is equivalent to determining the branching rules for U16 & SOlo, 
and the results for partitions of four or less are given in table 4. For the symmetric 
S-functions {m} of U16 it appears that 

(10.2) 

This rule, whilst dimensionally correct, must remain merely a conjecture, since we have 
been unable to prove that in the resulting terms [A]  we necessarily have A s  2 0. 

The plethysms 0 0 { p }  = [15] 0 { p }  associated with the branching for Uz5* 4 Olo 
are listed for partitions I* of rank three or less in table 5. They may then be determined 

Table 4. U16 1 SOlo reductions corresponding to the plethysms A+ 0 {CL}. 

16 
136 
120 
816 

1360 
560 

3876 
9180 
5 168 
7140 
1820 

[A; 01, 
[11+[151* 
u31 

[21+ [2i41+ + ~2’1, 
[12]+ [14]+[212]+[214]+ + [2312]+ 
[0]+[1~]+[2]+[21~]++[2~] 
[ 17 + [ 141 + [ 2 17 + [ 22 1 
[214]-+[22] 

[A; lI++[A; 1’1, 
[A; 01- +[A; l]+ + [A; 13]+ 
[A; 1’3- 

Table 5. UzS2 & Ol0 reductions corresponding to the plethysms [is] 0 { p } .  

252 111 

31 626 Il2} 

31 878 [25]+ [24]+ 2[23]+ [2212] + [27+ [214]+2[2]+ [14]+ [l2]+[0] 

[24]+ [2312] + [2212]+[22] + 2[212]+ [14] +[12] + [O] 

2699 004 {3} [3’]+ [341]+ 2[3312]+ [3’2’1] +2[3*21] + 3[3’13]+ [324]+2[323]+2[32212] 
+4[322]+4[3212]+2[32]+4[314]+2[3]+ 2[241] +6[231]+ 3[2’13] 
+ 6[2’1] + 8[213] + 2[21]+ 5[ 15]+ 2[13] + 2[1] 

5334 252 I21) [341]+ [3322]+2[332]+2[3312]+ 2[33221]+ 6[3’21]+ 3[3213]+2[321] 
+ [324]+4[323]+ 5[32212]+ 4[32’] + 10[32l2]+2[32]+ 5[3141 
+ 4[312] +4[241] + 10[231] + 9[2’13] + 10[221] + 16[213] 
+ 6[21] + 7[15] + 6[13] + 2[1] 

+ 6[3212] +[314]+ 4[312] + [241] + 6[231] + 5[2’13] +4[2’1] 
+ 8[213]+ 2[21]+2[1’]+6[13] 

2635 500 u31 2[332] + 2[33]+ 2[32221]+ [3213] + 2[3221] + 2[321] +2[323] + 3[32212] 
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via (7.18), from the tabulations of the plethysms {15} 0 { p }  given elsewhere (Butler and 
Wybourne 1971). 

The plethysms U” 0 { p }  are somewhat more tedious to evaluate, but this may be 
done through the use of (7.17). We list the independent plethysms for partitions p of 
weight three or less in table 6 .  A complete list may then be obtained through the use of 
(7.14) once again. 

Finally, the plethysms [15]+ 0 { k }  associated with the restriction U126 4 Solo  are 
listed in table 7 for partitions p of three or less. 

R C King, Luan Dehuai and B G Wybourne 

Table 6. Plethysms Cl”@ { p }  for Solo.  

0” 0 {2} = ([2]+ [212]+ [23]+ [214]+ + [23121- +[251+) - ([ol+[121+[141 + [221+[22121 + [241) 

0‘0 {3}= 0“(([121+[2141++[231+[251+)- ([ol+[141+[221+[23121+~) 

U 0 {Zl} = 0“(([2] +[212] +[2312]+ +[2312]-) - (2[12]+[2212]+[24])) 

Table 7. u126.1 SOlo reductions corresponding to the plethysms [is]+ 0 {p} .  

126 (11 V I +  
8 001 I21 [251++[231+[2141++[21 

7 875 {I2} [2312]+ + [2123 

341 376 I31 [35]+ + [3312]+ + [3213]- + [324]+ +[32212]+ + [3223 + 2[314]+ +[3] + [231] 
+ [221] + [2 131 + [ 153- 

[332’]+ +[3212]+ +[3221] +[3243+ + 2[32212]+ + [322]+ [32121 + 2[314]+ 
+ [312] +[241]+ +[231]+ [2213]+ + [2213]- + [221]+2[213]+[21] + [is]- 

[33]+ [32221]+ + [32212]+ +[3212] +[312] + [231] +[2213]+ +[213]+ [13] 

66 675 

325 500 u3}  

11. SOlo invariant polynomials and Higgs potentials 

The construction of a Higgs potential that is both a symmetric quartic polynomial in a 
set of Higgs scalar fields and an invariant with respect to some symmetry group G such 
as SOlo has been discussed elsewhere (Wybourne 1980). If the Higgs scalar fields q5 
form the basis of a unitary representation A of G, which is in general reducible, then the 
number of independent parameters in the Higgs potential is the number of times the 
trivial, identity representation appears in the plethysm 

A 0 ((21 + (31 + (41). (11.1) 

In grand unified models based on SOlo, it is of interest to consider the case 
corresponding to the set of Higgs scalar fields 

4 = { + U ,  4+, 4-1. (11.2) 

The fields qbu transform as the basis states of the adjoint irrep 11’1 of dimension 45, 
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whilst q L  transform as basis states of the irreps [lS]* of dimension 126, so that 

A =[1‘]+[ls]++[lS]-, (11.3) 

It should be noted that the irreps [A] of SOlo with A s  = 0 are real and orthogonal, so 

[A I[A 1 = [OI, LA I[cL 1 3 LO1 if p # A ,  (1 1 . 4 ~ )  

[A 1 o (2) = [OI, (11.4b) 

that 

[ A I  o (1’) 3 P I ,  
whilst the irreps [A]+ and [A]- with A s  # 0 are mutually complex conjugate, neither 
orthogonal nor symplectic, so that 

These results are exemplified, in part, by the formulae 

[1’3o{2)= [221+[21+[141+[01, ( 1 1 . 6 ~ )  

[is]* o (2) = VI+ + p31+ [2i4i+ + PI, (11.6b) 

[1’]+[1’]- = [24] + [2’1’]+ [22] + [14]+ [12] + [O]. (1 1 . 6 ~ )  

Turning to the question of second-order invariants, the expansion 

([i2i+[isi++[i5i-) o{21= [1210(2)+[1s1+ o ( 2 )  

+ [is]- o (2) + [i2][is]+ + [i2][i5]- + [is]+[is]- (11.7) 

is such that from (11.6) it is clear that 

([PI + [is]+ +[is]-) o (2) = 2~01, (11.8) 

with the two invariants, arising from [l’] 0 (2) and [ls]+[ls]-, conveniently specified in 
the notation of (11.2) by 

[dJi l o 1  and [4+4-1[01. (11.9) 

The first of these is just the usual second-order Casimir invariant. 

( [121+[~sl++~lsl-)  0 ( 3 ) =  [1’1~(3)+[1’1+ 0(3)+[1’1- O(31 

In the third-order case 

+ ([PI o {2))([i51+ + [is]-) + (~1’1+ o {21)([i23+ [is]-) 

+([is]- o {21)([i21+ [i51+)+ [i2i[i5i+[i5i- (11.10) 

whilst 

[ 1’1 0 (3) = [3’] + [3 11 + [2’ 1’3 + [2 1’1 + [ 143 + 2[ 1’3, (1 1.1 l a )  

[isl,o (3) = [PI* + [33i2~* + [3212~, + [x4]* + [32212~, 

+[32’]+ 2[314]* +[3]+[231]+ [221]+[213]+[1s]l,. (1 1.1 1 b) 

Hence using the general results (1 1.4) and (1 1 3 ,  along with (11.6) and (1 1.1 l) ,  gives 

([PI + [i51+ +[is]-) 0 (31 = [OI (11.12) 
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with the single invariant, arising from [l’] [15]+ [is]-, specified by 

[4a4+4-1[01. (1 1.13) 

In the fourth-order case 

([i2i+[i5i++[i5i-) o{41= [i210{41+[i51+ o{4)+[i5i-  o{4)  

+(P21 o ~ 3 ~ ~ ~ [ 1 5 1 + + ~ ~ 5 1 - ~ + ~ ~ 1 ’ l +  0 {3))([l2l+[1’1-) 

+ (11’1- o {3))([1’1+ [i51+) + ( [PI  o {2))([i51+ o (2)) 

+ ([1’1 o {2))([i51- o (2)) + ([i51+ o {2))([i51- o (21) 

+ ([1’1 o {2i)[i5]+[i5i- +([is]+ o (2))[i2i[i5i- 

+ ([i51- o {2))[i2i[i5i+. (1 1.14) 
Taking the terms one by one: the invariants in [l’] 0 (4) can be found by using ( 7 . 8 ~ )  
and noting that from ( 1 l . l l a )  and ( 1 1 . 4 ~ )  

(11 .15~)  U’I 0 {3))[1’1 = 2[01 
whilst from ( 1 1 . 6 ~ )  and (11.46) 

([l’l 0 (2)) o { P I  = ([2’1 + [21+ [141 + LO]) 0 (1’) s LO]. (1 1.15 b) 
The last step depends upon the use of (7.3d), which implies that 

(A +B + C + .  . .) 0 (1’) = A  0 {1’)+B 0 (1’)+. . . + A B  +AC +. . , +BC+. . , , 

Thus 
(1 1.16) 

[ P I  0 (4) = 2[01. (11.17) 
Similarly from (1 1.11 b)  and (1 1.4) 

([i51* o {31)riS1* = roi (1 1.18~)  
whilst from (11.6b) and (11.4) 

(ri51, o (21) o (1’) s [OI 
so that from ( 7 . 8 ~ )  

(11.18b) 

[is]* o (41 3 r01. (1 1.19) 
The terms (El’] 0 (3))[15], and ([15]* 0 (3))([1’]+[1’],) do not contain CO], as may 

From (4.11~) and (4.14) 
be seen from (11.11). 

[ P I [  PI*  = [2’ 13]* + [ 15]* + [213] + [ 131 (11.20) 
so that comparison with (1 1.6b) indicates that ([l’]* 0 {2))[1’][15], also do not contain 
[OI. 

All the remaining terms contribute invariants: 

([i21 o {2))([i51, o 0 ) )  2 [OI, 

([i51+ o {21)([i51- o (2)) =mi, 

(1 1 . 2 1 ~ )  

(1 1.21 b) 

(11.21c) (D’I 0 {2))[151+[151- = 3[01. 
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Thus (11,17), (11.19) and (11.21) indicate that 

([ 1'1 + [ 15]+ + [ 151-) 0 (4) 2 15[0] (1 1.22) 

with the 15 invariants given explicitly by 

[411[01, ( [4;  l[ol)2, (1 1 . 2 3 ~ )  

[4: ICOI, [44-1[01, (11.236) 

([4:1[21[4? IEZI), ([4:1[21[4! 1[21), (11.23~) 

1[~5,+[41 1[~51,), (14: ] [PI  [4%31), 
([4: 1[21[42_ hZl), (1 1.23d) 

( [4  2a IC221[4+4-1[221), ~~42aIC1~1~4+4-1~~',~, ([42a1[21[4+4-1[21). (1 1.234 

These are not all independent of the second-order invariants (11.9), one linear 

2 
~ ~ ~ : 1 ~ 2 ~ ~ 1 + ~ 4 - 1 ~ 2 1 ~ 1 ~ ~ ,  

combination of the terms in (11.23a), (11.23d) and (11.23e) being given by 

([4:l[ol)2, ([4+4-lcol)2 and ([4:1[01[4+4-1~01) 
respectively. 

third-order invariant and ten independent fourth-order invariants. 
This leaves a total of two independent second-order invariants, one independent 

12. Conclusions 

The results obtained in this paper permit the unambiguous evaluation of all possible 
Kronecker products of irreps (tensor and spinor) of 0, and SO,. A complete prescrip- 
tion for resolving up to fourth powers of any irrep of 0, and SO, has been found. These 
results should be relevant to the development of grand unified theories. The resolution 
of the Kronecker squares and cubes finds important applications in the calculation of 
symmetrised nj symbols. 
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